The Usefulness of Feature Selection in Auditors Opinion Type Prediction

Document Type : Research Paper



Abstract: Despite the importance of predictive variable in prediction, in most of the research in the field of auditors’ opinion the purpose was rendering the suitable models. Meanwhile, less attention was paid to the selection of optimal predictive variable and appropriate models of these selection. Therefore, in most of these research the predictive variables were chosen randomly and according to the prior research. The process of selecting variables could be used as a preprocess for omitting irrelevant variables and selecting optimal variables before creating the model. In this regard, this study investigates the usefulness of Correlation-Based Features Selection (CFS) in auditors’ opinion prediction of listed companies in Tehran Stock Exchange. The classifiers including Artificial Neural Networks (ANN) and logistic regression were used. In overall, the experimental results of investigating 1214 firms-years from 2008 to 2015, confirmed the usefulness of CFS Method in predicting auditors' opinion. In other words, the application of the CFS method, increases the mean of accuracy in comparison with using all variables, and reduces the occurrence of type I and type II errors. Furthermore, the results indicated that ANN outperforms the logistic regression.


Abbaszadeh, M. R. & Manzarzadeh, H. (2011). The effect of Characteristics of Board of Director on Reporting of Independent Auditors and Accepting Companies which Was Accepted in Tehran Stock Exchange, The Iranian Accounting and Auditing Review, 18 (63), 95-112.(in Persian)
Alfaro, E., García, N., Gámez, M. & Elizondo, D. (2008). Bankruptcy Forecasting: An Empirical Comparison of Adobos and Neural Networks, Decision Support Systems, 45 (1), 110-122.
Amini, P., Mohammadi, K. & Abbasi, SH. (2011). The investigation of effecting Factors on the issue of qualified auditing report: Application of neural network method, Journal of Management Accounting, 4(11), 25-39.
(in Persian)
Ashbaugh, H. & Warfield, T.D. (2003). Audits as A Corporate Governance Mechanism: Evidence from The German Market. Journal of International Accounting Research, 2 (1), 1-21.
Bagherpoor Valashani, M., Saei, M., Meshkani, A. & Bagheri, M. (2013). Prediction of Independent Auditor Opinion in Iran: Data Mining Approach, Accounting and Auditing Research, 5 (19), 134-150.(in Persian)
Chen, C. P. & Zhao, R. (2000). An emerging market’s reaction to initial modified audit opinions: Evidence for the shanghai stock exchange. Contemporary Accounting Research, 17 (3), 429-555.
Chen, M.Y. (2011). Predicting Corporate Financial Distress based on Integration of Decision Tree Classification and Logistic Regression. Expert Systems with Applications, 38(9), 11261-11272.
DeAngelo, L. (1981). Auditor Size and Auditor Quality. Journal of Accounting and Economics, 3 (3), 183-199.
Dellepiane, U., Marcantonio, M., Laghi, E. & Renzi, S. (2015). Bankruptcy Prediction Using Support Vector Machines and Feature Selection during the Recent Financial Crisis. International Journal of Economics and Finance, 7 (8), 182-195.
Doumpos, M., Gaganis, C. & Pasiouras, F. (2005). Explaining qualifications in audit reports using a support vector machine methodology. Intelligent Systems in Accounting, Finance and Management, 13 (4), 197-215.
Fernandez-GaMez, M.A., Garcıa-Lagos, F. & Sanchez-Serrano, J.R. (2016). Integrating Corporate Governance and Financial Variables for the Identification of Qualified Audit Opinions with Neural Networks. Neural Computing and Applications, 27(5), 1-18.
Firth, M. (1980). A note on the impact of audit qualifications on lending and credit decisions. Journal of Banking & Finance, 4 (3), 257-267.
Gaganis, Ch., Pasiouras, F. & Doumpos, M. (2007). Probabilistic Neural Networks for the Identification of Qualified Audit Opinions, Expert Systems with Applications, 32 (1), 114-124.
Gaganis, C., Pasiouras, F., Spathis, C. & Zopounidis, C. (2007). A Comparison of Nearest Neighbours, Discriminant and Logit Models for Auditing Decisions, Intelligent Systems in Accounting, Finance and Management, 15 (1-2), 23-40.
Hall, M.A. & Smith, L.A. (1999). Feature Selection for Machine Learning: Comparing a Correlation-Based Filter Approach to the Wrapper. Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference, May 01 – 05, 235-239.
Hall, M. A. (2000). Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning. In Proceedings of the Seventeenth International Conference on Machine Learning, (June 29 - July 02), 359-366.
Hasas Yeghane, Y. & Yaghobi Manesh, S. (2003). The impact of audit reports on stock price. Accounting Empirical Studies, 1(3), 27-58.(in Persian)
Hasas Yeghane, Y., Taghavifard, M. & Mohammadpoor, F. (2014). Using Probabilistic Nueral Networks to Identifying. Auditing: Theory and Practice, 1 (1), 131-159.(in Persian)
Hejazi, R., Mohamadi, Sh., Aslani, Z. & Aghajan, M. (2012). Earnings Management Prediction Using Neural Networks and Decision Tree in TSE. The Iranian Accounting and Auditing Review, 19 (68), 31-46. (in Persian)
Hu, Y. C. (2010). Analytic Network Process for Pattern Classification Problems Using Genetic Algorithms. Information Sciences, 180(13), 2528–2539.
Jardin, P. (2010). Predicting Bankruptcy Using Neural Networks and Other Classification Methods: The Influence of Variable Selection Techniques on Model Accuracy, Neurocomputing, 73 (10-12), 2047-2060.
Karami, Gh. & Beik Boshroye, S. (2011). Corporate Governance and Equity Valuation: The Model by Using Artificial Neural Network, The Iranian Accounting and Auditing Review, 18 (64), 129-150.(in Persian)
Keasey, K., Watson, R. & Wynarzcyk, P. (1988). The small company audit qualification: a preliminary investigation. Accounting and Business Research, 18 (72), 323-333.
Kirkos, E., Spathis, C., Nanopoulos, A. & Manolopoulos, Y. (2007). Identifying Qualified Auditors opinion: A Data Mining Approach, Journal of Emerging technologies in Accounting, 4(1), 183-197.
Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. IJCAI'95 Proceedings of the 14th international joint conference on Artificial intelligence, 1137-1143.
Liang, D., Tsai, C.H. & Wu, H.T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73(1), 289-297.
Lo, S.C. (2010). The Effects of Feature Selection and Model Selection on the Correctness of Classification. Proceedings of the 2010 IEEE IEEM, 989-993.
Maggina, A. & Tsaklanganos, A. A. (2011). Predicting Audit Opinions Evidence from the Athens Stock Exchange. The Journal of Applied Business Research, 27 (4), 53-68.
Mahdavi, Gh. & Ghayori Moghadam, A. (2010). Investigating the information content of qualified audit reports in companies listed on Tehran Stock Exchange. Accounting and Auditing Research, 2(6), 65-85.(in Persian)
Menhaj, M. B. (1998). Foundations of Neural Networks. Tehran: Publication Center of Professor Hesabi.(in Persian)
Momeni, M. & Faal Ghayomi, A. (2007). Statistical Analysis Using SPSS (1th ed). Tehran: New Book Publication.(in Persian)
Moradi, M. & Fakhrabadi, A. (2010). Evaluation of Cultural Factors Effect on Auditors Evaluation of Internal Control and Assess Control Risk, Financial Accounting Research, 1 (1-2), 89-102.(in Persian)
Nikkhah Azad, A. (2014). Audit Fundamental Concepts Statement (3th ed), Tehran: Audit Organization.(in Persian)
Pourheidari, O. & Aazami, Z. (2010). Predicting Auditor’s Opinions: A Neural Networks Approach, Accounting Knowledge, 1(3), 77-97.(in Persian)
Ravi Kumar, P. & Ravi, V. (2007). Bankruptcy Prediction in Banks and Firms via Statistical and Intelligent Techniques - A Review, European Journal of Operational Research, 180 (1), 1-28.
Saeedi, A. & Aghaie, A. (2010). Predicting Financial Distress of firms Listed in Tehran Stock Exchange Using Bayesian networks. The Iranian Accounting and Auditing Review, 16 (3), 59-78.(in Persian)
Sajadi, H., Farazmand, H., Dastgir, M. & Dehghanfar, D. (2008). Factors affecting on qualified audit reports, Accounting Empirical Studies, (18), 123-145.
(in Persian)
Setayesh, M. & Jamalianpoor, M. (2009). The Investigating relationship between financial ratios and non-financial variables with the auditor's opinion. Accounting and Auditing Research, 1(2), 130-157.(in Persian)
Setayesh, M., Ebrahimi, F., Seif, M. & Sarikhani, M. (2013). Forecasting the Type of Audit Opinions: A Data Mining Approach. Journal of Management Accounting, 5 (4), 69-82.(in Persian)
Setayesh, M., Fatahi Nafchi, H., Abbaspoor, S. & Roustaei, M. (2014). Offering a new approach to the issuance of audit reports by using data mining (Case Study: Companies Listed in Tehran Stock Exchange). Journal of Audit Science, 14 (57), 5-26.(in Persian)
Shabahang, R. & Khatami, M. (1999). The impact of audit requirements on share price and the analysis of annual financial statements by officials in Tehran Stock Exchange. Management and Economics, 3 (40), 23-50.(in Persian)
Shourvarzi, M. R., Bakhtiyari, M., ZendehDel, A. & Esmaeilzadeh, M. (2011). Comparison of independent auditors and financial variables in predicting bankruptcy. The Iranian Accounting and Auditing Review, 18(65), 63-78.
(in Persian)
Tsai, C. (2009). Feature Selection in Bankruptcy Prediction. Knowledge Based Systems, 22 (2), 120-127.
Veerabhadrappa, J. & Rangarajan, L. (2010). Multi-Level Dimensionality Reduction Methods Using Feature Selection and Feature Extraction. International Journal of Artificial Intelligence and Applications, 1(4), 54-68.
Wang, G. Ma, J. & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41 (5), 2353-2361.
Yu, L. & Liu, H. (2003). Feature Selection for High-Dimensional Data: A Fast Correlation-based Filter Solution. Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 856-863.